This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/warshallfloydrestore.hpp"
#pragma once
#include "graphtemplate"
#include <bits/stdc++.h>
using namespace std;
vector<vector<int>> warshallfloydrestore_p;
vector<vector<bool>> warshallfloydrestore_unreachable;
// ワーシャルフロイド法で求めた最短経路の復元 O(n^3)
template<class T = int, bool directed = false, bool weighted = true>
vector<T> warshallfloydrestorebuild(graph<T, directed, weighted>& g, int from, int to) {
d = vector<vector<int>>(g.size(), vector<int>(g.size(), numeric_limits<int>::max()));
warshallfloydrestore_p = vector<vector<int>>(g.size(), vector<int>(g.size(), -1));
for (int i=0; i<g.size(); i++) {
d[i][i] = 0;
for (auto& _e : g[i]) {
d[i][_e.to] = _e.cost;
warshallfloydrestore_p[i][_e.to] = i;
}
}
for (int k=0; k<g.size(); k++) {
for (int i=0; i<g.size(); i++) {
for (int j=0; j<g.size(); j++) {
if (d[i][k] < numeric_limits<int>::max()/2 && d[k][j] < numeric_limits<int>::max()/2) {
if (d[i][j] > d[i][k] + d[k][j]) {
d[i][j] = d[i][k] + d[k][j];
warshallfloydrestore_p[i][j] = k;
}
}
}
}
}
warshallfloydrestore_unreachable = vector<vector<bool>>(g.size(), vector<bool>(g.size(), false));
for (int i=0; i<g.size(); i++) {
for (int j=0; j<g.size(); j++) {
if (d[i][j] == numeric_limits<int>::max()) {
warshallfloydrestore_unreachable[i][j] = true;
}
}
}
return d[from][to];
}
// ワーシャルフロイド法で求めた最短経路の復元 O(n)
vector<int> warshallfloydrestore(int from, int to) {
vector<int> path;
if (warshallfloydrestore_unreachable[from][to]) return path;
for (int i=to; i!=from; i=warshallfloydrestore_p[from][i]) path.push_back(i);
path.push_back(from);
reverse(path.begin(), path.end());
return path;
}
#line 2 "graph/graphtemplate.hpp"
#include<bits/stdc++.h>
using namespace std;
// 辺の構造体 edge(from, to, cost, id)
template<class T = int>
struct edge {
int from, to;
T cost;
int id;
};
// 頂点の構造体 vector<edge<T>>
template<class T = int>
using edges = vector<edge<T>>;
// グラフの構造体 graph<T, directed, weighted>
template <class T = int, bool directed = false, bool weighted = false>
struct graph {
bool isdirected, isweighted;
edges<T> _edges;
vector<edges<T>> data;
T sumcost;
graph() = default;
// 頂点数 n のグラフを作成する
graph(int n) : isdirected(directed), isweighted(weighted), data(n), sumcost(T{}) {}
// from から to へ辺を追加する
void add_edge(int from, int to, T cost = 1, int id = -1) {
if (id == -1) id = _edges.size();
data[from].push_back(edge<T>(from, to, cost, id));
_edges.push_back(edge<T>(from, to, cost, id));
if (!isdirected) {
data[to].push_back(edge<T>(to, from, cost, id));
}
sumcost += cost;
}
// 辺を追加する
void add_edge(edge<T> _e) {
add_edge(_e.from, _e.to, _e.cost, _e.id);
}
// 標準入力から辺を読み込む
void read(int m, int indexed = 1) {
for (int i=0; i<m; i++) {
int from, to;
T cost = 1;
cin >> from >> to;
if (isweighted) cin >> cost;
add_edge(from - indexed, to - indexed, cost);
}
}
// 頂点数を返す
int size() {
return data.size();
}
// 頂点を返す
edges<T> operator[](int k) {
return data[k];
}
vector<int> path_to_vertex(edges<T>& _e) {
vector<int> re;
if (_e.size() == 0) {
return re;
}
if (_e.size() == 1) {
re.push_back(_e[0].from);
re.push_back(_e[0].to);
return re;
}
int x=_e[0].from,y=_e[0].to;
if (x==_e[1].to || x == _e[1].from) swap(x, y);
re.push_back(x);
for (int i=1; i<_e.size(); i++) {
re.push_back(y);
x = _e[i].to;
if (x == y) x = _e[i].from;
swap(x, y);
}
return re;
}
edges<T> vetex_to_path (vector<int>& v){
edges<T> re;
for (int i=0; i+1<v.size(); i++) {
for (auto& _e : this[v[i]]) {
if (_e.to == v[i+1]) {
re.push_back(_e);
break;
}
}
}
return re;
}
};
#line 4 "graph/warshallfloydrestore.hpp"
using namespace std;
vector<vector<int>> warshallfloydrestore_p;
vector<vector<bool>> warshallfloydrestore_unreachable;
// ワーシャルフロイド法で求めた最短経路の復元 O(n^3)
template<class T = int, bool directed = false, bool weighted = true>
vector<T> warshallfloydrestorebuild(graph<T, directed, weighted>& g, int from, int to) {
d = vector<vector<int>>(g.size(), vector<int>(g.size(), numeric_limits<int>::max()));
warshallfloydrestore_p = vector<vector<int>>(g.size(), vector<int>(g.size(), -1));
for (int i=0; i<g.size(); i++) {
d[i][i] = 0;
for (auto& _e : g[i]) {
d[i][_e.to] = _e.cost;
warshallfloydrestore_p[i][_e.to] = i;
}
}
for (int k=0; k<g.size(); k++) {
for (int i=0; i<g.size(); i++) {
for (int j=0; j<g.size(); j++) {
if (d[i][k] < numeric_limits<int>::max()/2 && d[k][j] < numeric_limits<int>::max()/2) {
if (d[i][j] > d[i][k] + d[k][j]) {
d[i][j] = d[i][k] + d[k][j];
warshallfloydrestore_p[i][j] = k;
}
}
}
}
}
warshallfloydrestore_unreachable = vector<vector<bool>>(g.size(), vector<bool>(g.size(), false));
for (int i=0; i<g.size(); i++) {
for (int j=0; j<g.size(); j++) {
if (d[i][j] == numeric_limits<int>::max()) {
warshallfloydrestore_unreachable[i][j] = true;
}
}
}
return d[from][to];
}
// ワーシャルフロイド法で求めた最短経路の復元 O(n)
vector<int> warshallfloydrestore(int from, int to) {
vector<int> path;
if (warshallfloydrestore_unreachable[from][to]) return path;
for (int i=to; i!=from; i=warshallfloydrestore_p[from][i]) path.push_back(i);
path.push_back(from);
reverse(path.begin(), path.end());
return path;
}