This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/dualshortestpath.hpp"
#pragma once
#include "graphtemplate"
#include <bits/stdc++.h>
using namespace std;
// 最短経路問題の双対(牛ゲー)を解く
template<class T>
struct dualshortestpath {
graph<T, true, true> g;
dualshortestpath(int n) : g(n) {}
// f(to) <= f(from) + cost
void add_edge(int from, int to, T cost = 1, int id = -1) {
if (cost < 0) {
cost = -cost;
swap(from, to);
}
g.add_edge(from, to, cost, id);
}
// f(to) <= f(from) + cost
void add_edge(edge<T> _e) {
if (_e.cost < 0) {
_e.cost = -_e.cost;
swap(_e.from, _e.to);
}
g.add_edge(_e);
}
// 牛ゲーを解く d[t]: max{f(t) - f(s)} を求める O(nm)
vector<T> solve(int start = -1) {
vector<T> d(N, numeric_limits<T>::max()/2);
if (start == -1) fill(begin(d), end(d), T{});
if (start != -1) d[start] = 0;
for (int i=0; i<g.size(); i++) {
int updated = 0;
for (auto _e : g._edges) {
if (d[_e.from] + _e.cost < d[e.to]) {
d[_e.to] = d[_e.from] + _e.cost;
updated = 1;
}
}
if (!updated) break;
if (i == g.size() - 1) {
for (int j=0; j<g.size(); j++) {
d[j] = -1;
}
}
}
return d;
}
};
#line 2 "graph/graphtemplate.hpp"
#include<bits/stdc++.h>
using namespace std;
// 辺の構造体 edge(from, to, cost, id)
template<class T = int>
struct edge {
int from, to;
T cost;
int id;
};
// 頂点の構造体 vector<edge<T>>
template<class T = int>
using edges = vector<edge<T>>;
// グラフの構造体 graph<T, directed, weighted>
template <class T = int, bool directed = false, bool weighted = false>
struct graph {
bool isdirected, isweighted;
edges<T> _edges;
vector<edges<T>> data;
T sumcost;
graph() = default;
// 頂点数 n のグラフを作成する
graph(int n) : isdirected(directed), isweighted(weighted), data(n), sumcost(T{}) {}
// from から to へ辺を追加する
void add_edge(int from, int to, T cost = 1, int id = -1) {
if (id == -1) id = _edges.size();
data[from].push_back(edge<T>(from, to, cost, id));
_edges.push_back(edge<T>(from, to, cost, id));
if (!isdirected) {
data[to].push_back(edge<T>(to, from, cost, id));
}
sumcost += cost;
}
// 辺を追加する
void add_edge(edge<T> _e) {
add_edge(_e.from, _e.to, _e.cost, _e.id);
}
// 標準入力から辺を読み込む
void read(int m, int indexed = 1) {
for (int i=0; i<m; i++) {
int from, to;
T cost = 1;
cin >> from >> to;
if (isweighted) cin >> cost;
add_edge(from - indexed, to - indexed, cost);
}
}
// 頂点数を返す
int size() {
return data.size();
}
// 頂点を返す
edges<T> operator[](int k) {
return data[k];
}
vector<int> path_to_vertex(edges<T>& _e) {
vector<int> re;
if (_e.size() == 0) {
return re;
}
if (_e.size() == 1) {
re.push_back(_e[0].from);
re.push_back(_e[0].to);
return re;
}
int x=_e[0].from,y=_e[0].to;
if (x==_e[1].to || x == _e[1].from) swap(x, y);
re.push_back(x);
for (int i=1; i<_e.size(); i++) {
re.push_back(y);
x = _e[i].to;
if (x == y) x = _e[i].from;
swap(x, y);
}
return re;
}
edges<T> vetex_to_path (vector<int>& v){
edges<T> re;
for (int i=0; i+1<v.size(); i++) {
for (auto& _e : this[v[i]]) {
if (_e.to == v[i+1]) {
re.push_back(_e);
break;
}
}
}
return re;
}
};
#line 4 "graph/dualshortestpath.hpp"
using namespace std;
// 最短経路問題の双対(牛ゲー)を解く
template<class T>
struct dualshortestpath {
graph<T, true, true> g;
dualshortestpath(int n) : g(n) {}
// f(to) <= f(from) + cost
void add_edge(int from, int to, T cost = 1, int id = -1) {
if (cost < 0) {
cost = -cost;
swap(from, to);
}
g.add_edge(from, to, cost, id);
}
// f(to) <= f(from) + cost
void add_edge(edge<T> _e) {
if (_e.cost < 0) {
_e.cost = -_e.cost;
swap(_e.from, _e.to);
}
g.add_edge(_e);
}
// 牛ゲーを解く d[t]: max{f(t) - f(s)} を求める O(nm)
vector<T> solve(int start = -1) {
vector<T> d(N, numeric_limits<T>::max()/2);
if (start == -1) fill(begin(d), end(d), T{});
if (start != -1) d[start] = 0;
for (int i=0; i<g.size(); i++) {
int updated = 0;
for (auto _e : g._edges) {
if (d[_e.from] + _e.cost < d[e.to]) {
d[_e.to] = d[_e.from] + _e.cost;
updated = 1;
}
}
if (!updated) break;
if (i == g.size() - 1) {
for (int j=0; j<g.size(); j++) {
d[j] = -1;
}
}
}
return d;
}
};