This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/dijkstra.hpp"
#pragma once
#include "graphtemplate"
#include <bits/stdc++.h>
using namespace std;
// ダイクストラ法を用いて単一始点最短経路を求める ただし、負辺が存在しないこと O(m log n)
template<class T = int, bool directed = false, bool weighted = true>
vector<T> dijkstra(graph<T, directed, weighted>& g, int from = 0) {
vector<T> dist(g.size(), numeric_limits<T>::max()); dist[from] = T{};
vector<bool> visited(g.size());
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> q;
q.push({T{}, from});
while (!q.empty()) {
auto [t, x] = q.top(); q.pop();
if (visited[x]) continue;
visited[x] = true;
for (auto& _e : g[x]) {
int y = _e.to;
if (dist[x] + _e.cost < dist[y]) {
dist[y] = dist[x] + _e.cost;
q.push({dist[y], y});
}
}
}
return dist;
}
// ダイクストラ法を用いて二点間最短経路を求める ただし、負閉路が存在しないこと O(m log n)
template<class T = int, bool directed = false, bool weighted = true>
T dijkstra(graph<T, directed, weighted>& g, int from, int to) {
return dijkstra(g, from)[to];
}
#line 2 "graph/graphtemplate.hpp"
#include<bits/stdc++.h>
using namespace std;
// 辺の構造体 edge(from, to, cost, id)
template<class T = int>
struct edge {
int from, to;
T cost;
int id;
};
// 頂点の構造体 vector<edge<T>>
template<class T = int>
using edges = vector<edge<T>>;
// グラフの構造体 graph<T, directed, weighted>
template <class T = int, bool directed = false, bool weighted = false>
struct graph {
bool isdirected, isweighted;
edges<T> _edges;
vector<edges<T>> data;
T sumcost;
graph() = default;
// 頂点数 n のグラフを作成する
graph(int n) : isdirected(directed), isweighted(weighted), data(n), sumcost(T{}) {}
// from から to へ辺を追加する
void add_edge(int from, int to, T cost = 1, int id = -1) {
if (id == -1) id = _edges.size();
data[from].push_back(edge<T>(from, to, cost, id));
_edges.push_back(edge<T>(from, to, cost, id));
if (!isdirected) {
data[to].push_back(edge<T>(to, from, cost, id));
}
sumcost += cost;
}
// 辺を追加する
void add_edge(edge<T> _e) {
add_edge(_e.from, _e.to, _e.cost, _e.id);
}
// 標準入力から辺を読み込む
void read(int m, int indexed = 1) {
for (int i=0; i<m; i++) {
int from, to;
T cost = 1;
cin >> from >> to;
if (isweighted) cin >> cost;
add_edge(from - indexed, to - indexed, cost);
}
}
// 頂点数を返す
int size() {
return data.size();
}
// 頂点を返す
edges<T> operator[](int k) {
return data[k];
}
vector<int> path_to_vertex(edges<T>& _e) {
vector<int> re;
if (_e.size() == 0) {
return re;
}
if (_e.size() == 1) {
re.push_back(_e[0].from);
re.push_back(_e[0].to);
return re;
}
int x=_e[0].from,y=_e[0].to;
if (x==_e[1].to || x == _e[1].from) swap(x, y);
re.push_back(x);
for (int i=1; i<_e.size(); i++) {
re.push_back(y);
x = _e[i].to;
if (x == y) x = _e[i].from;
swap(x, y);
}
return re;
}
edges<T> vetex_to_path (vector<int>& v){
edges<T> re;
for (int i=0; i+1<v.size(); i++) {
for (auto& _e : this[v[i]]) {
if (_e.to == v[i+1]) {
re.push_back(_e);
break;
}
}
}
return re;
}
};
#line 4 "graph/dijkstra.hpp"
using namespace std;
// ダイクストラ法を用いて単一始点最短経路を求める ただし、負辺が存在しないこと O(m log n)
template<class T = int, bool directed = false, bool weighted = true>
vector<T> dijkstra(graph<T, directed, weighted>& g, int from = 0) {
vector<T> dist(g.size(), numeric_limits<T>::max()); dist[from] = T{};
vector<bool> visited(g.size());
priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> q;
q.push({T{}, from});
while (!q.empty()) {
auto [t, x] = q.top(); q.pop();
if (visited[x]) continue;
visited[x] = true;
for (auto& _e : g[x]) {
int y = _e.to;
if (dist[x] + _e.cost < dist[y]) {
dist[y] = dist[x] + _e.cost;
q.push({dist[y], y});
}
}
}
return dist;
}
// ダイクストラ法を用いて二点間最短経路を求める ただし、負閉路が存在しないこと O(m log n)
template<class T = int, bool directed = false, bool weighted = true>
T dijkstra(graph<T, directed, weighted>& g, int from, int to) {
return dijkstra(g, from)[to];
}